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Systematizing belief systems regarding macromolecular crys-

tallization has two major advantages: automation and

clari®cation. In this paper, methodologies are presented for

systematizing and representing knowledge about the chemical

and physical properties of additives used in crystallization

experiments. A novel autonomous discovery program is

introduced as a method to prune rule-based models produced

from crystallization data augmented with such knowledge.

Computational experiments indicate that such a system can

retain and present informative rules pertaining to protein

crystallization that warrant further con®rmation via experi-

mental techniques.
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1. Introduction

Protein crystallization, like many aspects of structural biology,

is becoming increasingly data-intensive. Data accumulate in

many forms, including databases, the published literature and

laboratory notebooks. Indeed, these data are so voluminous

that automated methods for their interpretation have become

mandatory. There are several informatics aspects of the crys-

tallization problem that are especially challenging for reasons

discussed below. One of these is to develop computational

methods that effectively ®nd useful associations present in the

data, i.e. methods for data mining/knowledge discovery.

Another is that much of the data are not collected in a form

that is well suited for machine interpretation. For example, a

list of reagents and concentrations in a crystallization cocktail

can be very informative to a person reading a journal report,

but to a computer `ammonium sulfate', `polyethylene glycol

4000' and `polyethylene glycol 6000' are simply character

strings that are devoid of chemical signi®cance. Here, we

report a method for importing that signi®cance into two inter-

related methods of machine learning. One of these methods

was developed around the protein-crystallization problem. It

is worth emphasizing that here we also report that progress in

applying machine-learning methods requires simultaneous

attention to both the computational and the descriptive

aspects of the problem.

1.1. Background

Crystallization is the ®rst step in structure determination by

X-ray crystallography; it is typically also the rate-limiting step.

Although the general physical-chemical theories that underlie

crystallization are understood in principle, the detailed theory

of the forces that promote and maintain macromolecular

crystal growth is still preliminary. Most, if not all, macro-

molecular crystallization efforts are highly empirical, with

each case being somewhat unique and idiosyncratic. Hence, it

is necessary to search empirically for the optimum value of

experimental conditions from a large space of about 25



parameters (e.g. temperature, pH etc.). This process is

primarily trial and error, with each successive iteration leading

to improvements in the size of the crystal and, more impor-

tantly, in the quality of its X-ray diffraction pattern. During

the course of these experiments, the crystallographer accu-

mulates substantial data on unsuccessful, partially successful

and (hopefully) successful crystallization conditions.

Thus, there is a wealth of experimental data on successful

and failed crystallization trials from which we can induce

patterns or theories (correlations as well as causality) that

capture relationships between experimental parameters,

experimental protocols and protein characteristics. Such

empirically derived theories can provide a rational approach

to macromolecular crystallization and improve the probability

of success of future crystallizations.

The Biological Macromolecule Crystallization Database

(BMCD) is a database constructed by Gilliland (1988) that

captures information about successful crystallization experi-

ments. This database has been analysed several times to obtain

an initial set of screening conditions for crystallizing a new

macromolecule. Samudzi et al. (1992) performed a cluster

analysis on version 1.0 of the BMCD and suggested a set of

screening conditions speci®c to a major class of macro-

molecules. Gopalakrishnan et al. (1994) recreated these clus-

ters using two kinds of methods: statistical analysis (similar to

those of Samudzi et al., 1992) and COBWEB (Fisher, 1987; a

machine-learning and discovery program). The results from

the clustering analysis were then used as input to the RL

(Clearwater & Provost, 1990) inductive rule-learning

program, resulting in veri®cation and expansion of Samudzi's

results (Hennessy et al., 1994). Hennessy et al. (2000)

augmented the BMCD with a hierarchical classi®cation of the

macromolecules contained therein, as well as data on the

additives used with them and performed a statistical analysis

that has led to a Bayesian technique for postulating the degree

of success of a set of experimental conditions for a new

macromolecule belonging to some known class.

However, as noted by Jurisica et al. (2001), there are

limitations in the BMCD. As the data are extracted from the

literature, negative results are not reported in the database

and many crystallization experiments are not reproducible

owing to an incomplete method description, missing details or

erroneous data. For instance, the complete list of chemical

additives, an important factor in the ability to grow a crystal

successfully, is not reported for many entries in the database.

Furthermore, the crystallization conditions that were tried

may in some cases have as much to do with the personal

preferences of the investigators as they do with the chemical

and physical requirements of the protein. It is generally

impossible to discern between the personal preferences and

`real' chemistry from a purely retrospective look at the results.

Nevertheless, it is clear that associations can be found within

the BMCD data which can then be usefully interpreted. As

more data become available in public databases, e.g the

Protein Data Bank, or in electronic laboratory notebooks,

these problems will tend to ameliorate, but will not

disappear.

Data mining is meaningful only when there is a suf®cient

amount of useful data available for the purposes of statistical

analysis and model building. What can be done in cases where

data is limited and there is still an intrinsic need for better

understanding of underlying phenomena within such a limited

data set? One possible answer lies in feature construction or

the building of an appropriate set of descriptors to augment

the limited data set and facilitate statistical learning tech-

niques to uncover underlying patterns within the data. The

Biological Macromolecule Crystallization Database (BMCD)

is a useful data set that provides a record of experimental

conditions for successfully crystallized macromolecules. Yet,

the number of descriptors and the depth of their descriptions

are limited. As such, data mining of the BMCD yielded little

success in terms of understanding the associations between the

descriptors and the outcome of experiments, namely the kind

and quality of crystal produced. In this paper, we present a

hierarchical representation of additives and

show the usefulness of augmenting a new of set

of descriptors to the BMCD database in terms

of the interestingness of the rules discovered by

our novel program called HAMB (pronounced

ham-bee; Livingston et al., 2001a,b).

Simply adding more information in the form

of new descriptors is insuf®cient to uncover

useful underlying associations, as it leads to the

production of a larger number of redundant or

useless associations. Our encoding of the data

in the form of hierarchies coupled with the

incorporation of heuristic rules into the

development of a novel prototype-discovery

algorithm enabled the learning of associations

from within the augmented data set. In this

paper, we present some insights into these

heuristic rules: how they worked to eliminate

non-interesting associations and retain useful

discoveries.
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Figure 1
The iterative process of crystallization data evaluation reported here. The main loop
includes evaluation and annotation of `rule sets' produced by HAMB (see text), which are
then used to generate heuristics used by HAMB to ®lter subsequent rule sets. With each
iteration, the rule sets produced by HAMB re¯ect more closely the features of interest.



2. Methods

Three basic methods form the foundation of this report. The

®rst is an established machine-learning technique called RL

(Rule Learner; Clearwater & Provost, 1990) that attempts to

®nd associations in complex data that can be expressed as `if±

then' rules. Secondly, additional information is built into

crystallization data to provide chemical signi®cance to the list

of additives in any crystallization experiment. This is achieved

by hierarchical descriptors that are both categorical and

numeric, as described below in x2.2. The third is a heuristic

learning program termed HAMB that is built upon RL.

HAMB initiates multiple runs of RL, directing it, ®ltering its

output, grouping results and presenting them to the user in

useful ways, where `usefulness' is one of the things determined

by the heuristics (Fig. 1).

2.1. Inducing rules from data with RL

RL (Clearwater & Provost, 1990) is an inductive learning

program that learns by incrementally generating rules and

testing them against the available data. It was ®rst used to

learn rules for predicting mass spectra of complex organic

molecules (Feigenbaum & Buchanan, 1993). A rule consists of

a set of conditions and a predicted outcome (i.e. if hconditionsi
then houtcomei), so testing the rules consists of ®nding all of

the data that meet the conditions and computing the percen-

tage of those data that match the predicted outcome. New

rules are generated by specializing existing rules, i.e. by adding

new conditions, with the goal of ®ltering out data that did not

match the predicted outcome while retaining the data that did

match the outcome. The result is a process that incrementally

focuses the rules on patterns that exist in the data.

One feature of RL that makes it a ¯exible learner is its

ability to use background knowledge to constrain the search

for rules. Background knowledge includes such information as

constraints on numeric valued attributes, such as range of

value and step size, desirable properties of rules being learned,

as well as available ISA hierarchies of domain attributes. The

ISA hierarchy represents the `kind-of' relationships between

attributes, such as `lysine' ISA (is a kind of) `polar amino acid'.

This latter property of being able to constrain the search space

of hypotheses of rules using ISA hierarchies is very useful for

our purposes of representing and dealing with macro-

molecular class hierarchies and hierarchy of additives. The

hierarchy of space groups associated with crystal Bravais

lattice structures constitutes an ISA hierarchy: for example,

P6222 ISA P62 ISA P6 (space group P6222 is subfamily of P62,

which in turn is a subfamily of space group P6, a hexagonal

class system). New meaningful attributes were added to

enhance the readability of the rules that were output by RL.

For instance, an individual space group was converted to

represent four different attributes; namely, crystal system,

point group, centering and polymorphic. The crystal system

values were based on the Bravais lattice.

RL has statistics associated with each rule produced from

the training data. Below is an example of a sample rule

discovered by RL indicating how likely, given the data, is it

that a crystal with habit `plates' would have a resolution limit

of diffraction under 3.5 AÊ .

CRHABIT PLATES! DIFLIM-UNDER-3:5

p � 45; n � 5; tp � 520; tn � 109:

Here, p and n are the number of positive and negative

examples in which this rule applies and tp and tn are the total

number of true positive and true negative examples available.

Each rule also has with it numbers indicating sensitivity,

speci®city and positive predictive value.

2.2. Representation of additives and chemical relationships

In order to use RL to analyze the BMCD data, we had to

convert it into a usable form (Table 1). This reorganization of

the data is described in Hennessy et al. (1994). In this section,

we describe further augmentations to the BMCD to enhance

RL's analysis of the data.

Considering ammonium sulfate reveals the problems

inherent in describing crystallization additives to a computer.

It is typically used in `high' concentrations (over 1 M) as a

precipitating agent. However, it is obviously a salt that, for

example, would signi®cantly alter the ionic strength, especially

at high concentrations. Indeed, it is the salt of a strong acid and

a weak base; hence, it also acts as a buffer at alkaline pH. All

these factors must be considered if one wants to objectively

assess relationships in crystallization data.

We therefore developed two independent hierarchical

schemes to describe each additive. The ®rst relates to the

`commonly perceived role' of precipitating agent, salt, buffer

etc., because this is how crystallization experiments are usually

presented and discussed in the literature. The second provides

a framework for the description of the physical and chemical

properties of each additive. Many, like ammonium sulfate,

dissociate into species in solution; in this example, it dissoci-
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Table 1
Representation of a subset of features in one BMCD experiment entry.

Attribute value and representation Interpretation

((macmol "Alcohol-dehydrogenase")
(maccon 5) (crmethod Bul-Dialysis)
(srctis liver) (srcgsp equus-caballus)
(pH 8.4) (temp 4.0) (buffer Tris)
(spacgp C222-1) (di¯im 2.4))

An entry in the BMCD that contains the successful crystal-
lization conditions of alcohol dehydrogenase obtained from
horse liver using the bulk-dialysis method. Favorable
conditions were a macromolecular concentration of
5 mg mlÿ1, a pH of 8.4, Tris buffer and a temperature of
277 K. The crystal that resulted from this experiment
diffracted well with a diffraction limit of 2.4 AÊ and
belonged to space group C2221.



ates into NH�4 and SO2ÿ
4 . The basic descriptor for each addi-

tive is simply a list of the corresponding species found in

solution. This is followed by descriptors of each species,

including charge and pKa, as indicated below. This facilitates a

global description of the mother liquor. For example, if the

buffer is ammonium phosphate, ammonium ions would also be

contributed from this source; this approach facilitates a simple

calculation of the combined concentration. It also facilitates

the calculation of overall properties, such as ionic strength.

We group the information contained in our augmented

version of the BMCD into ®ve groups. Note that while some of

this information was in the BMCD, most of it was not.

(i) Additive properties: information pertaining to additives,

such as their concentrations and perceived roles in the cases.

(ii) Species properties: information about the chemical

species that the additives break down into, such as their

chemical classi®cations and concentrations.

(iii) Global properties: information about the crystal-

growth experiment as a whole, such as the crystallization

method, pH of the solution and temperature.

(iv) Macromolecular properties: properties of the macro-

molecule being crystallized, such as its molecular weight or

classi®cation.

(v) Crystal properties: properties of the resulting crystal,

such as its diffraction limit and form.

2.2.1. Description of additive properties. We represent the

chemical properties of additives by their concentrations and

perceived role. An additive's perceived role is the typical role

in which an additive is used; for example, polyethylene glycol

is typically used as a precipitating agent. The perceived roles

form a hierarchy and are presented in Fig. 2. The BMCD

provides information on the additives present in a solution

along with their concentration.

Our machine-learning program requires that the data be

given in row±column format, with each row representing an

experiment and each column representing an attribute (i.e.

property or characteristic) of that experiment. Therefore, each

experiment has the same number of attributes. However, in

the BMCD there are a varying number of additives present.

We represent each additive used in a reasonable number (®ve)

of experiments in the original BMCD as a separate attribute

whose value refers to its concentration. For our initial research

purposes, we do not consider rarely used additives, as the

value of concentration for such attributes would be zero for

most cases and is, therefore, unlikely to be statistically

signi®cant. In the future, we would like to implement different

strategies for attribute selection in order to overcome the

limitations that could arise from this simple assumption. Now

that crystallization data is being entered into the PDB, it will

enable us to employ more sophisticated feature selection.

Within the BMCD data set, some concentrations were

speci®ed as molarities, while others were given as percentages.

We converted concentrations given in percentages to mola-

rities when possible. If it was not possible to make this

conversion, we simply represent the additive as being present.

Because 47 additives were used in more than ®ve experiments,

we added 47 attributes to the BMCD, with possible values of

either present, meaning the corresponding additive was

present but the concentration could not be converted to

molarity, or numbers representing the concentrations (or

absence) of their respective additives.

Equations (1) to (4) depict our formulas for converting

percentage values to molarity. We use linear approximations

to represent the relationships. For ammonium sulfate,

percentage saturation is converted to molarity as

Molarity � Percentage saturation� �4:05 M�
100

: �1�

For solids speci®ed in percent weight per volume (w/v), we

calculate molarity as

Molarity �Percentage concentration

100
�g �100 ml�ÿ1�

� �1000 ml lÿ1� � 1

mol wt �g Mÿ1�
� �

�2�

For liquids, we convert percentage volume to molarity. For

liquids with speci®c gravities,

Molarity � Percentage concentration

100
� �1000 ml lÿ1�

� specific gravity �g mlÿ1�
mol wt �g Mÿ1�

� Percentage concentration� 10� specific gravity

mol wt
:

�3�
For liquids with relative densities, molarity is calculated as

Molarity �Percentage concentration

100
� �1000 ml lÿ1�

� relative density �g mlÿ1�
mol wt �g Mÿ1�

� Percentage concentration

100
� �1000 ml lÿ1�

� density �g mlÿ1�
mol wt �g Mÿ1�

� Percentage concentration� 10� density

mol wt
: �4�
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Figure 2
Hierarchy showing the commonly perceived roles of additives.



Similarly, we added 11 attributes to represent the perceived

roles that were used in a reasonable number (®ve) of

experiments in the BMCD. Each attribute represents the total

concentration of additives ®lling a corresponding perceived

role. We convert all concentrations to molarity to facilitate the

computation of the concentrations, since concentrations

expressed by molarity may simply be summed to compute the

total concentration.

2.2.2. Description of species properties. Figs. 3(a) and 3(b)

present our hierarchical classi®cation of the species. To

represent this classi®cation in our augmented database, we

¯attened the hierarchy, using one attribute for each group in

our classi®cation. The value of the attribute is either (i) the

total concentration of species in the crystallizing solution that

belong to the corresponding group, if all concentrations are in

molarity, or (ii) `present', if precise numerical information is

not present for all cases in which the attribute appears. For all

groups having no species present in the solution, the value is 0.

For example, suppose there are only ammonium, sodium and

spermine ions present at concentrations of 1, 3 and 1 M,

respectively. Then, the concentrations of the o.amine and i.alk

groups would be 2 and 3 M, respectively. For all other groups,

the concentrations would be 0. 23 of the groups were used in

more than ®ve experiments in the BMCD; therefore, there are

23 attributes in our augmented BMCD, representing the

concentrations of the species belonging to the groups. The

coverage value of ®ve experiments was chosen as a reasonable

starting point since RL retains only those rules that cover a
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Figure 3
(a) Hierarchy showing the species present in additives. (b) Classi®cations of the species based upon select chemical properties.



reasonable number of training cases and are therefore more

likely to be statistically signi®cant when learning a general

concept.

The ionic strength is calculated whenever all concentrations

of the species in the solution were able to be represented in

molarities. For each species i in the solution, we ®rst calculate

the root-mean-square concentration for that species as

RootMeanSqConci �
minimum conci if max = min conci

0:5�minimum conc2
i �maximum conc2

i � if conci is not constant.

�
�5�

The ionic strength is then calculated using the formula

ionic strength �
P�RootMeanSqConci � Charge2

i �
2

: �6�

We also grouped the species by many of their chemical

properties such as pKa values, titratable groups, polymeriza-

tion and net charge (see Fig. 3b). As with our classi®cation

groups, for each of these groupings the value of the corre-

sponding attribute was the total concentration of all species in

the crystallization experiment that belong to that group, as

long as all concentrations are expressed in molarity; otherwise,

the value for that attribute is present. When all concentrations

for species in the solution are represented using molarities and

the pKa values for all the species are known, we calculate

buffering capacity as the slope of the titration curve from the

Henderson±Hasselbach equation,

buffering capacity �

loge 10� P
s2species

P
pKa2pKas

MeanConcentrations� �pHÿ pKa�10

�1� �pHÿ pKa�10�2
( )

:

�7�

2.2.3. Description of the global properties of crystal-
lization solutions. These properties pertain to the crystal-

lization experiment as a whole. The entry number (which we

ignored), crystallization method description, pH and

temperature were provided in the original database. We added

information about the crystallization method scale, crystal-

lization method type and, now that we have the necessary

chemical information, the buffering capacity and ionic

strength of the crystallization solution.

2.2.4. Description of the macromolecular class. The

original BMCD contained the macromolecule ID, macro-

molecule weight and macromolecule concentration. We added

an attribute representing a hierarchical classi®cation of the

macromolecules, which is detailed in Hennessy et al. (2000).

2.2.5. Description of crystal properties. These properties

consist of the diffraction limit and the crystal form. For the

latter, we used a hierarchical description of Bravais lattice

space groups along with the authors' description of the crystal

habit, which is usually obtained by visual inspection.

To summarize, the attributes in our augmented data set

include the following.

(i) Macromolecular properties: macromolecule name,

macromolecule class name and molecular weight.

(ii) Experimental conditions: pH, temperature, crystal-

lization method, macromolecular concentration and concen-

trations of chemical additives in the growth medium.

(iii) Characteristics of the grown crystal (if any): descriptors

of the crystal's shape (e.g. crystal form and space-group

description) and its diffraction limit, which measures how well

the crystal diffracts X-rays.

2.3. Machine learning via HAMB

The output from RL (applied to the augmented data) was

voluminous, in our case consisting of several hundred indivi-

dual rules, each of them requiring a judgement as to their

signi®cance. One can tweak the parameters for RL in order to

reduce the volume of the output, but that is time-consuming

and tedious. This led eventually to the conception and

development of a novel prototype autonomous discovery

program called HAMB (Livingston et al., 2001a,b) that

reasons and estimates the interestingness of the patterns

produced from the application of rule-based machine learning

to the augmented crystallization database. HAMB encodes

domain-speci®c knowledge and general heuristics that enable
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Table 2
Sample input ®le data speci®ed to HAMB.

Each example (experiment in BMCD) is speci®ed to the program as a row consisting of values for each attribute. Since the number of attributes is large, we present
the inverted table to allow several important attributes to be shown.

Attributes Example 1 Example 2 Example 3 Example 4

id 2360 2358 2356 2353
sodium-acetate-concentration not-present not-present >0.05<= 0.1-m not-present
sodium-chloride-concentration not-present not-present not-present >0.05<= 0.1-m
role-salt-concentration not-present not-present >0.05<= 0.1-m >0.05< 0.1-m
phosphate-concentration not-present >1.3-m not-present not-present
sodium-concentration not-present >0.3529-m >0.04<= 0.1-m >0.04<= 0.1-m
diffraction-limit ? <= 2 ? >2.4& = 2.8
buffering-capacity ? >0.036 >0.004&<= 0 >0.004&<= 0.036
Ionic strength <= 0.025 >5.975 >0.025&<= 0.157 >0.157&<= 2.207
Macromolecule-class p.s.l.pep p.s.e misc p.s.i



it to perform autonomous discovery from complex real-world

data.

In Livingston et al. (2001a,b), we describe the HAMB

program, which can decide for itself which discovery tasks to

perform and when to perform them. HAMB utilizes user

preferences and a small set of known relationships between

the attributes in the data to automatically set up the RL

program and to post-process the induced rules. HAMB

consists of an agenda-and-justi®cation-based framework for

selecting the next task to perform. Tasks refer to computa-

tional encoding of operations on items that refer to instances

of the search space of possible discoveries. Tasks are

performed using heuristics that create new items for further

exploration and that place new tasks on the agenda. This

framework has several desirable properties: (i) it facilitates the

encoding of general discovery strategies using various types of

background knowledge, (ii) it reasons about the appro-

priateness of the tasks being considered and (iii) it tailors its

behavior toward a user's interests by prioritizing tasks

according to an estimate of interestingness speci®ed by the

user.

For example, a task in HAMB would be to `examine the

relationship between ionic strength and predictivity of good

crystal'. Performing this task would involve the production of

new sub-tasks such as `induce rule-set' that will cause HAMB

to set up the induction task by (i) selecting a training set of

examples, (ii) selecting the feature set of attributes from which

the rules will be induced, (iii) selecting the parameters with

which to run RL and ®nally (iv) running RL to induce the

rules. HAMB then loads the induced rules and post-processes

them. The p value of a rule's positive predictive value is

calculated using Fisher's exact test using the 2 � 2 table

generated by the number of true and false positives as well as

negative test case predictions (based on a validation set of

examples that were unseen during learning) for each rule,

omitting those cases where there is no prediction. Fisher's

Exact Test (FET) is a statistical test used to determine if there

are nonrandom associations between two discrete variables.

HAMB uses the p values returned by FET in order to rank the

rules, so that it may be able to decide in what order to present

tasks to RL. Application of HAMB to crystallization data

shows its power in identifying patterns that are both inter-

esting and novel (Livingston et al., 2001a,b).

As shown in Fig. 4 and Table 2 and in the supplementary

material1, HAMB's input consists of the ®les containing the set

of cases that it will use to make its discoveries (the discovery

database), an optional testing set of examples (the testing

database), a domain theory ®le containing the domain-

dependent knowledge and ®les containing de®nitions of

domain-

independent relationships, properties, task types and

heuristics. HAMB reports as discoveries those items with

interesting relationships or properties, i.e. if its value exceeds a

threshold provided for each relationship or property. If the

testing database is not given to HAMB, it creates its own set of

test instances comprising of a random one-third of the

discovery database's cases (examples). One of HAMB's

methods for post-processing rules is to group them into rule

families (see supplementary material). These are groups of

rules where changing the value of one attribute on a rule's left-

hand side results in a consistent change in the value being

predicted (that is, the right-hand side of the rule). Apart from

making it easier for the user, the consistency of rules within a

family increases con®dence in the rules themselves.

A major advantage of this framework is that it provides a

clean separation of the discovery program from the knowl-

edge it uses. We provide further modularity in HAMB by using

domain-independent heuristics (and properties and relation-

ships) which refer to domain- and problem-speci®c informa-

tion that is either given in a domain theory ®le or discovered

by HAMB. While HAMB and its heuristics are general, they

access domain- and problem-speci®c information. Therefore,

HAMB is able to perform discovery using domain-speci®c

knowledge, allowing HAMB to tailor its behavior to the

discovery problem and to evaluate the cases given to it to

make discoveries from and the resulting discoveries in a

domain-speci®c context. Thus, HAMB is able to examine our

augmented BMCD database using a wide variety of knowl-

edge speci®c to macromolecule crystallization. In contrast,

most other knowledge-discovery, data-mining and machine-

learning programs are only capable of using one or two types

of background knowledge. Results of experiments with

HAMB, reported in x3, demonstrate that it uses background

knowledge effectively to evaluate its discoveries and avoid

reporting a large number of uninteresting rules.

The types of domain-speci®c knowledge that HAMB uses

are the following.

(i) Simple semantic information, such as potential target

attributes and the value used to denote missing values. Target

attributes refer to those class variables that are to be

predicted, such as DIFLIM_UNDER_3, which refers to the

class of crystals produced with a resolution limit of diffraction

of less than 3.0 AÊ . There are several missing values for attri-
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Figure 4
HAMB overview.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: AV5008). Details for accessing these data are given at the back of
the journal.



butes within the BMCD and a computer program such as

HAMB needs to know how such missing values are repre-

sented. By allocating a character such as `?' to indicate a

missing entry and letting HAMB know this to be the case, it is

possible to handle this incomplete information appropriately.

In most cases, HAMB will ignore this ®eld during calculations.

In cases where a concentration is speci®ed, but the actual

chemical name is missing, HAMB will treat the concentration

as a missing value as well since these are related ®elds in the

database.

(ii) Declarations of item groups, which is used to convey the

user's a priori interests. HAMB provides two mechanisms for

factoring a user's preferences into an item's estimated inter-

estingness: (a) via user-de®ned item groups, sets of items to

which the user assigns a utility, and (b) the weights used in

HAMB's function for estimating interestingness (see below).

To de®ne an item group, the user provides a name for the

group, a utility (a relative number) and a predicate for

determining the group's membership. Here, the user is more

interested in attributes that describe the outcomes of experi-

ments (that is, observables such as crystal type or crystal

shape) than attributes that describe the characteristics of

macromolecules (that is, givens such as the pI of protein) and

is also relatively more interested in such given attributes as

opposed to experimental controllable attributes such as the

presence of additives. To model these interests, three item

groups could be de®ned with utilities of 100, 50 and 25,

respectively. This will bias HAMB's discoveries to retain most

relationships that contain observables as the predicted vari-

able.

(iii) Interestingness weights: the weights HAMB uses to

estimate the interestingness of an item. HAMB estimates the

user's interest in an item using a hierarchical weighted sum of

selected properties. The user provides these weights in the

domain theory and they represent a crude model of the user's

preferences. The estimation of the interestingness weights is

made using abstraction and normalization as follows: (a)

values of an item's properties are calculated, (b) the values are

combined using weighted sums, (c) the values of the abstrac-

tions are normalized to ®t between 0 and 100 and (d) inter-

estingness weight estimates are computed using a weighted

sum of these normalized top-level abstractions. For example,

when estimating the interestingness of a rule, the properties

positive predictive value, negative predictive value, ruleset-

usage ratio, speci®city and sensitivity are abstracted into a

higher-level property called empirical support. Other higher-

level properties such as `novelty', `semantic simplicity',

`syntactic simplicity' and `utility' (see below) are derived from

ten properties used to describe attributes. A more detailed

example of the weights and abstractions can be found in

Livingston et al. (2001a,b).

(iv) Relationships between the attributes and their values

that are de®nitional or strongly believed to hold. HAMB uses

these relationships to identify ®ndings that are rediscoveries,

avoiding presenting these ®ndings as discoveries and to reduce

the amount of redundancy in its reported discoveries. The user

may specify a variety of known relationships among attributes

and their values (see supplementary material) as follows

below.

(a) De®nitionally related. This one-to-many relationship is

used when the ®rst attribute is derived from other attributes.

For example, ionic strength would be de®nitionally related to

concentration and charge. In the supplementary material,

examples of this relationship are shown between molecular

weight of macromolecule and its class.

(b) Translational equivalence. This one-to-one relationship

is a specialization of de®nitionally related and is used when

two attributes measure the same feature, such as the two

attributes C and F, which measure the temperature of the

same object, but represent the Celsius and Fahrenheit

temperature scales.

(c) Semantic equivalence. This relationship is used when

two attributes should have identical values. The attribute

names or descriptors are basically aliases for describing the

same value. For example, PEG concentration and precipitant

concentration would be equivalent if PEG was the precipi-

tating agent.

(d) Abstraction. This relationship implies that an attribute

A refers to the description of a more general class than

another attribute B. For example, A refers to `organic

chemical compound' and B refers to a subfamily of organic

compounds such as `aldehyde'. For more examples, see

Fig. 3(a). Several examples of abstraction relationships within

macromolecular class, crystallization methods and space

groups are depicted in the supplementary material.

(e) Discretization. Attributes that represent real values can

be represented as discrete valued ranges: for example,

PEG concentration can be represented as ranging from 0±10,

11±20, 21±30%(w/v); that is, in discrete ranges of 10 up

to 100%.

(f) Known related. This relationship is used when one

attribute is known to be related to a second attribute in a

manner not expressible using the other relationships, such as

when the lore of the domain is that the ®rst attribute is

somehow related to the second attribute but the exact rela-

tionship is unknown. For example, it has been found empiri-

cally that presence of small polyamines such as spermine in the

crystallization solution is associated with high-quality nucleic

acid crystals. This is clearly related to charge neutralization.

HAMB found a similar association with Mg2+ and thus can

deal with situations where multiple chemical means can be

used to achieve the same goal.

In the supplementary material, several examples of known

associations between ionic strength and chemical species,

buffering capacity and species are depicted.

3. Results and discussion

3.1. Use of RL on the BMCD data

We initially processed 1025 entries from an earlier version

of the BMCD and ran RL on several subsets of the data

divided based on three resolution limits of diffraction, namely

2.5, 3 and 3.5 AÊ (Hennessy et al., 1994). For each separate run

research papers

1712 Gopalakrishnan et al. � Machine-learning techniques Acta Cryst. (2004). D60, 1705±1716



of RL, we treated experiments within

the BMCD reporting resolution limit

above each of these values to be nega-

tive examples of good crystals (the split

of positive to negative examples was

approximately 75 to 25%, but varied

depending on our subsetting criteria).

We further focused on obtaining rules

relevant to protein crystallizations

alone. Our initial attempts at applying

machine-learning techniques to the

BMCD were partially successful in that

we were able to induce rules that were

indicative of the types of experimental

conditions that were reported as

resulting in high-quality crystals. We

categorized the rules obtained from RL

along two dimensions: (i) the kinds of

associations between given, controllable and observable

parameters of crystallization experiments and (ii) the rule

content (e.g. known facts in crystallography, new relationships

discovered). Based on this categorization, we were able to

con®rm several known relationships between given, control-

lable and observable parameters. RL also found several

interesting associations, including those between buffers and

their most effective pH value ranges from the BMCD, space

groups and warmer temperatures for successful crystals and

certain orthorhombic space groups as indicators of good

crystal quality.

The results of our initial work in applying RL to the BMCD

is described in Hennessy et al. (1994). The relationships

reported from this analysis clearly indicated the need for the

following: enriching the data representations, extending

machine-learning techniques to work with these representa-

tion and incorporating additional forms of domain knowledge

to guide induction. Furthermore, it was fairly clear that RL

generated `better' rules than those generated by statistical

clustering analysis (Gopalakrishnan et al., 1994; Samudzi et al.,

1992), in that the rules provide greater insight into the details

of the discovered relationships.

3.2. Initial use of HAMB on augmented BMCD data yielded
the expected information

We obtained 2225 examples from an updated BMCD

database (Gilliland, 1988). These data were supplemented, as

described above, with additional chemical information. The

number of features of crystallization data in this new database

grew to 170 descriptors. The additional information contains

many known dependencies which a discovery program could

®nd and report as discoveries, when actually they are not.

Thus, this additional information is a double-edged sword:

while it adds information to the database which may be useful

to a discovery program, it also increases the redundancy and

the number of non-novel patterns in the database, which can

make it dif®cult to inspect the discoveries to identify the

interesting discoveries, as well as lead to over®tting (Mitchell,

1997).

3.3. Machine learning via HAMB

In addition to the augmentations to the BMCD, we

provided HAMB with a wealth of chemical information about

the attributes, in the form of a table of 1549 known relation-

ships between the attributes. Excerpts of the information we

provided to HAMB are provided in the supplementary

material.

HAMB took approximately 24 h and 31 000 discovery

cycles on a Compaq NT workstation running at 1.3 GHz with

128 MB RAM to process the augmented BMCD data. During

that time, HAMB reported 575 discoveries. We categorized

these discoveries by their signi®cance and novelty. Our cate-

gories are shown in Table 3, along with the numbers (and

percentages) of discoveries in each category. A few of the

more interesting discoveries likely to be novel and signi®cant

are presented in Table 4. These discoveries may be helpful to

crystallographers, but because the data are noisy and are

biased by human preferences, further investigation is needed

to con®rm their validity. The ®rst three rules in Table 4 suggest

that different crystallization methods should be used for

speci®c types of macromolecules. The last three rules in Table 4

suggest that different ionic strengths may be required when

crystallizing enzymes, `heme'-containing proteins and small

proteins.

Table 5 presents a sample of HAMB's (re)discoveries that

represent associations that are known in the `lore' that a

second-year graduate student of structural biology might be

expected to know. Some of these rules also re¯ect clear

chemical reasoning. Divalent cations are needed to stabilize

nucleic acid crystallization. Some of the other rules may have

more intricate interpretations. For example, magnesium

chloride is only rarely used in protein crystallization, possibly

because of its well known tendency to form inorganic

crystals. There may also be examples of `cultural patterns',

such as the nucleic acid community's use of cacodylate buffers.

However, it remains to be seen whether cacodylate may

have some kind of stabilizing role in nucleic acid crystal-

lizations.
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Table 3
Categorization of the interestingness of 575 discoveries made by HAMB from the augmented
BMCD data.

The redundant rules removed during the semi-manual ®ltering (approximately 144) are counted as
Category 0 discoveries. Removing the 144 rules from the calculations results in only 22% (96/431)
Category 0 discoveries.

Category Description Number Percentage

IV Individually, Category IV discoveries could be the basis of a
publication in the crystallography literature, being both
novel and extremely signi®cant to crystallography

0/575 0

III In groups of about a dozen, Category III discoveries could
form the core of research papers in the crystallography
literature if substantiated by further experiments

92/575 16

II Category II discoveries are about as signi®cant as Category
III, but are not novel

192/575 33

I Category I discoveries are not as interesting as Category II or
III, but still are of some interest

51/575 9

0 Category 0 discoveries are any discoveries that are not
Category I, II, III or IV

240/575 42



The ability of HAMB to discover well known associations

from the augmented BMCD serves to both con®rm the exis-

tence of useful patterns within this augmented database, as

well as increase our con®dence in the validity of patterns

learned by HAMB. However, it is interesting to note that

HAMB also provided ranges of concentrations for some of

these known associations; i.e. although the association itself is

not novel, the boundaries of the numerical values involved in

the association may provide signi®cant new information. A

categorized subset of over 300 of HAMB's rules can be found

in the supplementary material.

3.4. Evaluation of HAMB's use of the additional knowledge

In order to substantiate our claim that HAMB effectively

uses the chemical and crystal-growth knowledge provided to

it, we performed a lesion study to evaluate the effectiveness of

some of HAMB's heuristics that use domain-speci®c knowl-

edge. To perform this study, we removed portions of the

knowledge given to HAMB or disabled the portions of HAMB

that use the knowledge. We used 500 cases randomly selected

from the augmented BMCD.

The unmodi®ed version of HAMB with the accumulated

crystal-growth knowledge was also run on this set of cases, as

was a version of HAMB that used no domain-speci®c

knowledge.

The types of knowledge used by HAMB that we tested are

as follows.

(i) Synonyms. If an attribute found in the feature set is

synonymous (as either discovered by HAMB or stated in the

domain theory) with another attribute in the feature set, the
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Table 4
Novel discoveries from HAMB.

The statistics reported for each rule are calculated from a validation set not used to learn the rule. The p value of a rule's positive predictive value is computed
using the Fisher's exact test (Sokal & Rohlf, 1969). P.RNA.E macromolecules are proteins that bind to RNA and catalyze a chemical reaction that modi®es it, P.S.H
(`heme'-containing) macromolecules are soluble proteins containing an iron-porphyrin prosthetic group (e.g. hemoglobin and cytochrome), P.S.L macromolecules
are small proteins and peptides and P.S.L.O macromolecules are heterogeneous subgroups of P.S.L.

True positives False positives Sensitivity Positive predictive value p value

Macromolecule class is P.RNA.E! crystallization method is
batch

141 88 0.39 0.62 <0.001

Macromolecule class is P.S.H! crystallization method is
temperature-crystallization

22 30 0.73 0.42 <0.001

Macromolecule class is P.S.L.O! concentration by
evaporation

67 14 0.65 0.83 <0.001

Macromolecule class is enzyme! ionic strength is greater
than 2.21 and less than or equal to 5.98

151 638 0.53 0.21 <0.001

Macromolecule class is P.S.H! ionic strength is greater than
5.98

90 139 0.28 0.39 <0.001

Macromolecule class is P.S.L! ionic strength is less than or
equal to 2.21

114 137 0.32 0.45 <0.001

Table 5
A sample of discoveries from HAMB in which the associations are well known.

The association between nucleic acid crystallization and magnesium chloride used to stabilize the highly negative charge is rediscovered by HAMB. Divalent
cations (including magnesium chloride) effectively stabilize nucleic acids because of their chemical properties. Many salts of divalent cations are insoluble, making
them undesirable for protein crystallizations. Such patterns are depicted in the rules discovered by HAMB and increase our con®dence in HAMB's ability to detect
patterns. Additionally, although the association between these properties is not novel, the numeric limits that HAMB also provides, such as those on the
concentrations, can provide signi®cant new information.

True positives False positives Sensitivity Positive predictive value

The macromolecule is a nucleic acid!magnesium chloride is
present with a concentration less than or equal to 0.04 M

60 54 0.46 0.53

The macromolecule is a nucleic acid! inorganic divalent
species are present with a total concentration between
0.0025 and 0.04 M

81 33 0.35 0.71

The macromolecule is a nucleic acid! species with net
charges �2 are present with a total concentration between
0.005 and 0.03 M

64 50 0.43 0.56

The macromolecule is a protein! inorganic divalent species
are not present

1660 262 0.92 0.86

The macromolecule is a protein!magnesium chloride is not
present

1862 60 0.90 0.97

The macromolecule is a protein! the species cacodylate is
not present

1857 65 0.90 0.97

The macromolecule is a protein! species with net charge�2
are not present

1274 648 0.92 0.66

The macromolecule is a protein! spermine is not present 1921 1 0.87 1.0
The macromolecule is a protein! spermine tetrahydro-

chloride is not present
1918 4 0.87 1.0



attribute with the lesser estimated interestingness is removed

from the set of attributes used to form the discoveries. A

baseline version of HAMB omitted this capability and did not

eliminate synonyms. It allowed the creation of 40 (19%) more

redundant rules than did HAMB with heuristics for dealing

with synonyms. This was surprisingly low, because the data

contain many similar attributes. However, HAMB's de®nition

of redundancy is very strict, requiring either intensional

(stated in the knowledge given to HAMB) or extensional

equivalence (identical values for the cases); therefore, only a

few pairs of attributes met its strict criterion for similarity. For

example, the additive sodium azide and the species azide are

synonyms.

(ii) Uninteresting attributes or values. The knowledge given

to HAMB may contain information about attributes and

values that are uninteresting or meaningless to the user.

HAMB's heuristics use this knowledge to avoid inducing rules

containing uninteresting features (either in the left-hand side

or right-hand side of a rule). A version of HAMB with

capability omitted allowed the generation of 300 (141%)

additional uninteresting rules. Examples of such rules involve

attributes whose values could be `not applicable', `unknown'

or `misc'. Since HAMB generates and tests all possible attri-

bute value associations in the ®rst iteration, rules that contain

uninteresting values for attributes on the left- or right-hand

side are dropped from consideration during the next iteration.

An example would be the broad association between a

chemical additive with unknown role and the class of all

proteins. By dropping such rules from further consideration,

HAMB can focus on the more interesting attributes and rules

that offer more information to the user.

(iii) Known associations. HAMB uses some of the knowl-

edge given to it to remove attributes that have a known

association (by causation, de®nition, association etc.) with the

current target attribute. HAMB also removes attributes that

are discovered to be extensionally equivalent to the target

attribute. The version of HAMB used to test these heuristics

omitted this use of knowledge and allowed the generation of

2897 (1367%) additional non-novel rules. Rules that represent

rediscoveries that are well known in the `lore' fall into the non-

novel category. Examples include associations between

nucleic acid class of macromolecules and the presence of

cacodylate buffers and magnesium chloride and the protein

class with the absence of magnesium chloride. This example

depicts the common choices of cacodylate buffers and

magnesium chloride in crystallization of nucleic acids. Also,

those discoveries that have clear chemical explanations are

also non-novel. For example, the association between the

presence of a chelator and presence of highly charged species

is non-novel, since EDTA is a highly charged chelator in

common use.

The regular version of HAMB reported 212 rules in this

experiment, whereas the baseline version that used no domain

knowledge reported 3936 rules. Thus, HAMB was able to use

chemical and crystal-growth knowledge to avoid the creation

of 3724 uninteresting rules. While the number of interesting

rules is about the same in each case, the number of unin-

teresting rules shown to the user is much lower when using the

regular version of HAMB, causing the percentage of inter-

esting rules shown to the user to be much higher. Fig. 5 shows

a graph of the results of applying the different types of domain

knowledge constraints using HAMB on the augmented

BMCD database.

3.5. Strengths and weaknesses of the BMCD versus strengths
and weaknesses of RL/HAMB

There is no question as to the value of using experimental

conditions from previous successful crystallizations as a guide

to the design of new trials. However, as noted by Jurisica et al.

(2001), there are two important limitations to the data

provided in the BMCD. Firstly, it only includes information on

the ®nal successful attempt to grow a crystal. Information

about the exact `process' by which this ®nal set of crystal-

lization conditions were arrived at is unavailable. Secondly,

many of the entries in the database are missing values for a

signi®cant number of important ®elds, such as the list of

chemical additives used in the experiment.

Our approach involves: (i) the augmentation of BMCD with

richer descriptions such as hierarchies of macromolecules

(Hennessy et al., 2000) and chemical additives (described in

this paper), (ii) the de®nition and encoding of relationships

within the crystallization domain by attaching measures of

interestingness to their examination within rule-based models

and (iii) applying machine-learning tools such as RL and

HAMB to make interesting discoveries from this augmented

data. Owing to the fact that the impact of the learned

discoveries is directly dependent on both the data as well as

the heuristics that encode relationships within the domain, our

algorithms are biased toward reporting discoveries that have

the most evidence within the data and are of interest to the

investigator. For example, we ®nd the distribution of pH
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Figure 5
Graph of the number of rules reported versus the type of omitted domain
information. The baseline version of HAMB reported 212 rules. Disabling
HAMB's ability to use knowledge about synonym attributes (given to
HAMB or discovered) allowed HAMB to report an additional 40
redundant rules. Omitting HAMB's knowledge about uninteresting
attributes or values allowed HAMB to report an additional 300 rules,
which were, by de®nition, uninteresting. Omitting knowledge about
known associations among the attributes allowed HAMB to report an
additional 2897 non-novel rules. The version of HAMB that used no
domain knowledge reported an additional 3724 redundant, uninteresting
or non-novel rules.



values in the BMCD for ligand-binding proteins is signi®cantly

different from those reported for enzymes at the 0.02% level.

This contrasts with the distribution of temperatures for these

two classes, which do not show a signi®cant difference. The

immunoglobin-like proteins and enzymes show the opposite

behavior, in which their distribution of temperatures is

different at the 0.14% level of signi®cance while there is no

signi®cant difference in the distributions of their pH values.

These results from our analyses provide objective support

for both the idea that there are patterns of crystallization

within the BMCD data, as well as the idea that classi®cation

schemes such as those we have developed capture some of

these patterns. Nevertheless, there is a caveat with the use of

techniques such as the RL/HAMB approach. The kinds of

patterns highlight and re¯ect those areas of the parameter

space that have abundant data. Therefore, by adding hier-

archies to certain attributes, we bias the outcome of machine-

learning and statistical approaches to consider patterns that

mostly involve those attributes.

4. Conclusions

One of the challenges in automating the design of crystal-

lization experiments is the representation of appropriate

elements of the chemical knowledge people bring to this

effort. Lists of additives (or the names of proteins) are simply

text strings to the computer. However, the results shown here

suggest that hierarchical classi®cation schemes, such those

presented here for `commonly perceived role' (Fig. 2) do

systematize important elements of the beliefs that have gone

into the design of many crystallization experiments.

Another challenge is to automatically ®nd the associations

present in collections of this type of data. The results

presented here also show that `rule-learning' algorithms such

as RL can detect many associations present in the data and

represent them as if±then rules of the generic type if

hconditioni then houtcomei.
However, rule-learning algorithms have a serious draw-

back: their outputs are voluminous and in this application the

majority of the rules generated simply restated the knowledge

represented explicitly or implicitly in the hierarchical classi-

®cation schemes, i.e. they were of little use in efforts to grow

better crystals. Therefore, a third challenge is to `®lter' the

rules and to detect patterns in groups of rules to reduce the

output to a manageable set of useful rule families.

The heuristically based HAMB algorithm described here

addresses that challenge. The heuristics themselves represent

a further systematization of the belief system used in crystal

growth that ranges from restatements of the chemical

knowledge to estimates of the potential interest of a particular

set of associations. Heuristics of the former type ®lter out

trivial rules that would not enhance our ability to grow crys-

tals, while those of the latter guide the entire automated

process towards the most useful set of rule families.

The results presented here range from the kind of things a

well trained graduate student would be expected to know to

potentially novel discoveries. It is noteworthy that these

associations were found by the algorithms based on the hier-

archies and heuristics described here. An example of the

`con®dence-building' discoveries is the association between

the crystallized macromolecule being a nucleic acid and the

presence of Mg2+ ions. It is also noteworthy that in addition to

®nding the magnesium±nucleic acid association, RL/HAMB

also established an upper bound on the effective magnesium

concentration (40 mM). An example of a potentially novel

discovery is the rule that proteins containing a heme (or heme-

like) prosthetic group crystallize at high ionic strength.
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